2018 Keynote Speakers


Prof. Muhammad Yahaya

Emeritus Professor in School of Applied Physics, UKM Malaysia, Malaysia 

Biography: Dr Muhammad Yahaya is an Emeritus Professor of Physics at Universiti Kebangsaan. Dr Muhammad Received his Ph.D at Monash University in 1979 and Drs from ITB, Indonesia in 1973. Dr Muhammad has 35 years of teaching and research experience with Universiti Kebangsaan Malaysia , Brown University, USA, Monash University, Australia. He was appointed Head of Physics Department (74-79), Deputy Dean, Center of Postgraduate studies (1994-1999), Director, Research Management Centre, (1999-02) Director, Centre of Academic Advancement, (02-07). Dr Muhammad maintains a diverse research interest including thin films, electronic property of metals, solar energy and computer in physics communication. Dr Muhammad holds membership to various organizations and institutions. He is actively involved in Physics and Science Terminology, Writing Malay language Text book in Physics. Dr Muhammad is currently a member of editorial board, UKM. He was a former president of Malaysian Solid State Science and Technology (1991-2012), Fellow Malaysian Institute of Physics, member IEEE and member Malaysia Materials Science. Dr. Muhammad has received many awards for his academic and professional excellence. He received commonwealth Scholarship and Fellowship plan to pursue his Ph.D (1975) DAAD -German Fellowship (1984), Fullbright fellowship (1984-1985), JSPS Fellowship and Associate member of ICTP,Italy, Fellow, Academy Science Malaysia (2006-now), KMN (1995) Anugerah KMN (1995),Tokoh Ilmuan MABBIM (1997),Award, Recognition of Service UKM (1999),ANS- Negeri Sembilan (2004), Award 'Prominent Physics Figure-UPM (2005)-100 years world year of physics, DSPN (Dato' Penang (2007).


Speech Title: Metal Oxide Nanostructure for Optical Gas Sensor
Abstract: The optical detection technique is considered as one of the accurate technique for gas detection and this technique has progressed very rapidly due to the design of detectors and radiation sources. Essentially, the technique measures the optical absorption and scattering of a gas species at a certain optical wavelength. The absorption spectrum with wavelength provide information on the nature of gas. Nanostructured materials offer a new promise for achieving high gas sensitivity and performance of gas sensor. Numerous processing methods have been used such as vacuum evaporation, laser ablation, magnetron sputtering and sol-gel. The selected processing techniques should be able to provide the desired oxide composition with specific dopant and less processing steps. Furthermore, in sensor miniaturization and integration with electronics, processing compatibility with silicon-based technologies is essential. This presentation will focus on the application of ZnO nanorod material for carbon monoxide  gas  sensor. The understanding and application of sensor and the integration with big data concept is crucial for future research.